
A Review of Lightweight Thread Approaches
for High Performance Computing

Adrián Castelló⇤ Antonio J. Peña† Sangmin Seo‡ Rafael Mayo⇤ Pavan Balaji‡ Enrique S. Quintana-Ortı́⇤
⇤ Universitat Jaume I, {adcastel,mayo,quintana}@uji.es
† Barcelona Supercomputing Center, antonio.pena@bsc.es
‡ Argonne National Laboratory, {sseo,balaji}@anl.gov

Abstract—High-level, directive-based solutions are becoming
the programming models (PMs) of the multi/many-core architec-
tures. Several solutions relying on operating system (OS) threads
perfectly work with a moderate number of cores. However,
exascale systems will spawn hundreds of thousands of threads
in order to exploit their massive parallel architectures and thus
conventional OS threads are too heavy for that purpose. Sev-
eral lightweight thread (LWT) libraries have recently appeared
offering lighter mechanisms to tackle massive concurrency. In
order to examine the suitability of LWTs in high-level runtimes,
we develop a set of microbenchmarks consisting of commonly-
found patterns in current parallel codes. Moreover, we study
the semantics offered by some LWT libraries in order to expose
the similarities between different LWT application programming
interfaces. This study reveals that a reduced set of LWT functions
can be sufficient to cover the common parallel code patterns and
that those LWT libraries perform better than OS threads-based
solutions in cases where task and nested parallelism are becoming
more popular with new architectures.

I. INTRODUCTION

The number of cores in high-performance computing (HPC)
systems has been increasing during the last years as reflected
in Figure 1, which illustrates the evolution of the number
of cores per socket in the supercomputers of the November
Top500 list [1]. This trend indicates that exascale systems are
expected to leverage hundreds of millions of cores. Therefore,
future applications will have to accommodate this massive
concurrency in some way. To do so, applications will need
to deploy billions of threads and/or tasks in order to extract
the computational power of such hardware.

Current threading approaches are based on operating system
(OS) threads (e.g., Pthreads [2]) or high-level programming
models (PMs) (e.g., OpenMP [3]) that are closely tied with OS
threads. Due to their relatively expensive context switching and
synchronization mechanisms, efficiently leveraging a massive
degree of parallelism with these solutions may be difficult.
Therefore, dynamic scheduling and user-level thread (ULT)/
tasklet models were first proposed in [4] to deal with the
required levels of parallelism, offering more efficient context
switching and synchronization operations.

Some of these lightweight thread (LWT) libraries are im-
plemented for a specific OS, such as Windows Fibers [5]
and Solaris Threads [6], or a specific hardware such
as TiNy-threads [7] for the Cyclops64 cellular architec-
ture. Other solutions emerged to support a specific higher-

0%

20%

40%

60%

80%

100%

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015

P
e
rc

e
n
ta

g
e
 (

%
)

Year

1
2

4
6

8
9-10

12-14
16-

Fig. 1: Top500 supercomputers grouped by the number of
cores per socket (Top500 November List).

level PM. This is the case of Converse Threads [8] for
Charm++ [9] and Nanos++ LWTs [10] for task parallelism
in OmpSs [11]. Moreover, there are general-purpose solu-
tions such as MassiveThreads [12], Qthreads [13], and
Argobots [14]; and solutions that abstract the LWT facil-
ities such as Cilk [15], Intel TBB [16], and Go [17]. In
addition, other solutions like Stackless Python [18] and
Protothreads [19] are more focused on stackless threads.
In spite of their potential performance benefits, none of these
solutions has been significantly adopted to date.

To address the current scenario, in this paper we demon-
strate the usability and performance gain of this type of
libraries. For this purpose, we decompose several LWT so-
lutions from a semantic point of view, identifying the strong
points of each LWT solution. Moreover, we offer a detailed
performance study by using OpenMP PM because of its
position as the de facto standard parallel programming model
for multi/many-core architectures. Our results reveal that the
performance of most of the LWT solutions is similar each
other and that they are as efficient as OS threads in some
simple scenarios while outperforming them in many cases.

In summary, the contributions of this paper are: (1) a
semantic analysis of the current and most used LWT solutions;
(2) a performance analysis demonstrating the benefits of
leveraging LWTs instead of OS threads; and (3) a study of the
functionality and PM that are shared between LWT libraries.

The rest of the paper is organized as follows. Section II
briefly reviews related work. Section III offers some back-
ground on our reference libraries. Section IV presents a
semantic analysis of the different LWT approaches. Section V
offers detailed information about the used hardware and soft-
ware. Section VI provides a preliminary analysis of important
parallel mechanisms. Section VII introduces the different
parallel patterns that are analyzed. Section VIII discusses the
microbenchmark design decisions. Section IX analyzes the
performance of LWT libraries. Section X contains conclusions
and future work proposals.

II. RELATED WORK

The use of ULTs to increase concurrency while maintain-
ing performance is not a new topic. In its evolution, as in
other paradigms, new solutions aim to improve upon previous
approaches. The concept of LWT was first introduced in [4],
focusing on fundamentals such as scheduling, synchronization,
and local storage. Converse Threads was later presented
in [20] as a low-level LWT library. It supports not only ULTs
but also stackless threads called Messages. Qthreads was
presented in [13] and compared with the Pthreads library by
means of a set of microbenchmarks and applications. This so-
lution increases the number of hierarchical levels to three with
an intermediate element known as Worker. MassiveThreads
was presented in [12]. This work provides a performance
comparison among MassiveThreads, Qthreads, Nanos++,
Cilk, and Intel TBB on several benchmarks. Argobots was
presented in [14] with microbenchmark and application evalu-
ations versus Qthreads and MassiveThreads. This library
is conceptually based on Converse Threads and allows
the use of stackless threads called Tasklets. In addition, it
features complete design flexibility and stackable, independent
schedulers.

Our purpose of this work is to present an analytic compari-
son of the LWT libraries from the semantic and PM points of
view as well as a performance evaluation demonstrating that
LWTs can be a promising replacement for Pthreads as the
base of high-level PMs.

III. BACKGROUND

In this section, we review the OpenMP PM and the different
LWT libraries analyzed and evaluated in this paper. While
Qthreads and MassiveThreads have been selected because
they are among the best-performing lightweight threading
models in HPC, Converse Threads and Argobots were
chosen because they are one of the first and currently used
LWT library and the most flexible solution, respectively.
Despite Go is not HPC-oriented, we have also included it as
a representative of the high-level abstracted LWT implemen-
tations.

A. OpenMP
OpenMP is an application programming interface (API)

that supports multi-platform shared memory multiprocessing
programming. Currently, there exist implementations for most

platforms, processor architectures, and operating systems.
OpenMP exposes a directive-based PM that helps users to
accelerate their codes exploiting hardware parallelism. In-
tel and GNU OpenMPs are two commonly used OpenMP
implementations that lie on top of Pthreads in order to
exploit concurrency. These runtimes automatically create all
the needed structures and distribute the work.

Since version 3.0, OpenMP has supported the concept of
tasks, which constitutes different pieces of code that may be
executed in parallel. In contrast with work-sharing constructs,
distinct OpenMP implementations leverage different mecha-
nisms for task management. In particular, while the GNU
version implements a shared task queue for all threads, the
Intel implementation incorporates one task queue for each
thread and integrates a work-stealing procedure for the load
balance.

B. Converse Threads

Converse Threads is a parallel-programming, language-
integration solution designed to allow the interaction of dif-
ferent PMs. This library seeks portability among hardware
platforms. Converse Threads exposes two types of work
units: ULTs and Messages. The former represents a migratable,
yieldable, and suspendable work unit with its own stack; the
latter represents a piece of code that is executed atomically.
Messages do not have their own stack and thus they cannot be
migrated, yielded, or suspended. Messages are used as inter-
ULT communication and synchronization mechanisms. Each
thread has its own work unit queue but only messages can be
inserted, before their execution, into other thread’s queues.

The implementation of the Charm++ programming model
is currently built on top of Converse Threads, and several
Converse Threads modules (e.g., client-server) have been
implemented specifically for that interaction.

C. MassiveThreads

MassiveThreads is a recursion-oriented LWT solution that
follows the work-first scheduling policy. When a new ULT is
created, it is immediately executed, and the current ULT is
moved into a ready queue. This behavior can be configured
differently inside the library at compile time. Using a work-
first policy benefits recursive codes that need less synchro-
nization. MassiveThreads uses the concept of Worker as a
hardware resource (generally a CPU or core), and the number
of Workers can be specified with environment variables.

Load balance is pursued with a work-stealing mechanism
that allows an idle Worker to gain the access to other Worker’s
ready queue and to steal a ULT. This mechanism requires
mutex protection in order to access the queue.

D. Qthreads

This library presents a hierarchical PM composed of three
levels: Shepherds, Workers, and Work Units. The first two
elements can be bound to several types of hardware resources
(nodes, sockets, cores, or processing units). The Shepherd
boundary level lies in a higher level than the Worker level.

Depending on the level of the Shepherds, they can manage one
or more Workers. These configurations are determined by the
programmer via environment variables and are created inside
the initialization function. Qthreads enables creating ULTs
into other Shepherds’ queues, providing enhanced flexibility
to the programmer. A large number of distributed structures
such as queues, dictionaries, or pools are offered along with
for loop and reduction functionality.
Qthreads allows a large number of ULTs accessing any

word in memory. Associated full/empty bits are used not only
for synchronization among ULTs but also to leverage mutex
mechanisms. This free-access to memory requires hidden
synchronization, which may severely impact performance.

E. Argobots
Argobots is the likely most flexible and recent solution. It

presents a mechanism-oriented LWT library that allows pro-
grammers to create their own PMs. Like Converse Threads,
Argobots presents two types of work units: ULTs and Tasklets
(similar to Converse Threads Messages).

This library provides the programmer with absolute control
of all the supported resources. Execution Streams may be
dynamically created at run time instead of at the initialization
point. Moreover, users can also decide the number of required
work unit pools as well as which Execution Streams have
access to each pool. Although a scheduler is defined for each
pool, programmers may still create their own instances and
apply them individually to the desired pools. Furthermore,
Argobots allows stackable schedulers, enabling dynamic
changes to the scheduling policy.

F. Go
Go is an object-oriented programming language focused on

concurrency that is practically hidden to programmers. From
the point of view of LWTs, this language supports concurrency
by means of goroutines that are ULTs executed by the
underlying threads. The number of threads may be decided
by the user at execution time.

In Go, all threads share a global queue where goroutines

are stored. A scheduler is responsible to assign them to idle
threads. This global, unique queue needs a synchronization
mechanism that may impact performance when an elevated
number of threads are used. The synchronization procedure
implemented by Go is an out-of-order communication channel
that, from the point of view of performance, can obtain better
results than the sequential mechanisms.

IV. SEMANTIC ANALYSIS OF THE LWT LIBRARIES

The semantic analysis of the LWT libraries presented in
this section aims to expose the flexibility offered to the
programmer. All these libraries were designed to provide more
flexible parallelization paradigms and with the main goal of
reducing the overhead caused by conventional OS threading
mechanisms. Although these solutions are executed in the
user space and the thread management is done without the
participation of the OS, the libraries lie on top of OS threads.

However, each library has its own PM, and the functionality
offered to the programmers may vary.

The most important features of the LWT libraries from
the point of view of the PM are summarized in Table I.
POSIX Threads (Pthreads) are also included for reference.
The number of hierarchical levels exposed by the different
threading library may vary and it depends on the number of
execution units or concepts that each library exposes. While
Pthreads only supports one level (the Pthread itself), the
LWT solutions support at least two different levels. The former
level corresponds to their own Pthread representation with
a queue/pool of work units that are scheduled and executed.
This structure is called Execution Stream in Argobots, Shep-
herd in Qthreads, Worker in MassiveThreads, Processor
in Converse Threads, and Thread in Go. The number of
these elements that are spawned in this level can be defined
by the user at run time (Group Control row) via environment
variables; but for Argobots the programmer can also create
them at run time. In contrast, Pthreads only allows to create
the OS thread itself, while schedulers and queues need to be
created entirely by the user. The second level corresponds to
work units, such as ULTs or Tasklets, that can be executed
by these OS threads. Qthreads adds one more level, called
Worker, that is positioned between the previous two, managed
by a Shepherd, and responsible for executing the work units.

Different types of work units can be used in LWTs (Number
of Work Unit Types row). All of them support ULTs that
are independent, yieldable, migratable codes with their own
private stack. Argobots and Converse Threads support an
extra work unit called Tasklet (atomic work unit without a
private stack). These work units are lighter than ULTs and can
be used in codes that do not require blocking calls or context
switches, or as a communication mechanism as Converse

Threads does.
The manner in which work units are stored and sched-

uled is also important to understand the PM. On the one
hand, Argobots and Pthreads can create several pool/queue
configurations thanks to their flexibility. On the other hand,
Qthreads, MassiveThreads, Converse Threads, and Go

do not offer that feature to programmers. While the latter only
uses a global shared queue, the former three assign one work
unit storage structure per thread.

Another key element of the LWT PMs is the scheduler. Go
is the weaker option because it is not oriented to resource
utilization but to concurrent tasks. This implementation is
less flexible (not even offering the common yield function)
and only has a shared work unit queue that the internal
scheduler manages. At the other extreme, Argobots is the
most flexible solution because it offers the function yield_to,
which avoids a call to the scheduler, giving directly the control
to another ULT. Moreover, it allows the user to create its own
ad-hoc, stackable schedulers that may be used by different
Execution Streams. In the middle between these two sides of
the spectrum, the other libraries use a predetermined scheduler
for the threads. In order to balance the workload, Qthreads
allows users to create work units from one Shepherd to another

TABLE I: Summary of the execution and scheduling functionality offered by the LWT libraries.
Concept Pthreads Argobots Qthreads MassiveThreads Converse Threads Go

Levels of Hierarchy 1 2 3 2 2 2
of Work Unit Types 1 2 1 1 2 1

Thread Support X X X X X X
Tasklet Support X X
Group Control X X X X X

Yield To X
Global Work Unit Queue X X X
Private Work Unit Queue X X X X X

Plug-in Scheduler X X X(configure) X X
Stackable Scheduler X

Group Scheduler X

one’s queue; MassiveThreads implements a random Work-
Stealing mechanism; and, Converse Threads leverages the
Messages.

V. HARDWARE AND SOFTWARE RESOURCES

All tests have been executed in an Intel 36-core (72 hard-
ware threads) machine consisting of two Intel Xeon E5-2699
v3 (2.30 GHz) CPUs and 128 GB of memory.

GNU’s gcc 5.2 compiler was used to compile all the
LWT libraries and OpenMP examples. Intel icc compiler
15.0.1 was used to evaluate the performance of the OpenMP
implementations and linked with the OpenMP Intel Runtime
20151009 version. For LWT libraries, Argobots, Converse

Threads, and Go libraries updated to 04-2016; Qthreads 1.10
and MassiveThreads 0.95 were evaluated.

All results presented next were calculated as the average
of 500 executions. The maximum relative standard deviation
(RSD) observed in the experiments was around 2%.

VI. BASIC FUNCTIONALITY

In this section, we review the basic functionality offered
by the different LWT solutions focusing on the OpenMP PM.
From a parallel PM point of view, all the features discussed
in Section IV have a crucial impact on performance. All
these LWT solutions as well as those based on OpenMP
follow the same programming approach. On the one hand,
programmers are responsible for controlling the main thread
that executes the sequential code. This thread is in charge
of creating secondary/worker threads, assigning work units,
executing their own work and, finally, joining them. This
completion may be done using different mechanisms, such as
barriers, messages, or thread joins. On the other hand, worker
threads wait for work to be done, acting over parallel codes.
The parallel code may vary depending on different aspects,
such as granularity, the type of code, or the data locality, but
the work unit creation and join phases are clearly critical steps.
Therefore, they need to be measured when LWTs are used.

Figure 2 reports the time spent by the main thread in
order to create one work unit for each thread used. Except
MassiveThreads (H), which maintains the performance be-
cause it creates all the work units into its own queue and
waits for the work-stealing, the other libraries (including
Intel and GNU OpenMP implementations labeled as icc and

gcc, respectively) show a linear increase of time because the
creation of the work units is done sequentially by the main
thread. Go’s performance is affected by using just one shared
queue. In that scenario the main thread is busy creating work
units while the other threads are accessing the queue to obtain
one work unit. This situation adds contention (mutexes) in
the queue access. The MassiveThreads (W) result is caused
by its underlying creation policy. The main thread creates the
first work unit, pushes the main execution flow to its own
queue, and executes the new created work unit. Another thread
steals the main task and creates the second work unit, and
so on. These steps add a non-negligible overhead when the
number of created work units is small. Converse Threads

and Argobots Tasklet use the lightest work unit available
for those libraries. This type of work unit yields the best
performance, thanks to its stackless structure, being up to twice
faster than the Argobots ULT approach and three times faster
than the Qthreads implementation. In this scenario, when
OpenMP is employed all threads are created in a previous
parallel section so that the overhead of the Pthreads creation
step is not added for a fair comparison.

 0.001

 0.01

 0.1

 1

1 2 4 8 16 24 32 36 40 48 56 64 72

C
re

a
te

 T
im

e
 (

m
s)

Number of Threads

gcc
icc
Argobots Tasklet
Argobots ULT
Qthreads

MassiveThreads (H)
MassiveThreads (W)
Converse Threads
Go

Fig. 2: Time of creating one work unit for each thread.

Figure 3 displays the time spent while the master thread is
waiting for the parallel code completion. In this analysis we
can distinguish different behaviors in the approaches of these
libraries. Since gcc OpenMP and Converse Threads use a
barrier mechanism, the join time increases linearly with the
addition of more threads. In this situation Converse Threads

does not benefit from the Tasklet utilization. The fast time

 0.001

 0.01

 0.1

 1

 10

1 2 4 8 16 24 32 36 40 48 56 64 72

Jo
in

 T
im

e
 (

m
s)

Number of Threads

gcc
icc
Argobots Tasklet
Argobots ULT
Qthreads

MassiveThreads (H)
MassiveThreads (W)
Converse Threads
Go

Fig. 3: Time of joining one work unit for each thread.

increment in icc OpenMP is caused by using more than one
thread per CPU. The behavior changes when more than 8
threads are used (9 cores per socket) and when more than 36
threads are spawned (36 core machine). This runtime performs
several checks that require the master thread to access to other
threads’ allocated memory. The other libraries use a join mech-
anism but, while Go implements the most efficient of them
based on out-of-order channel communication, Qthreads and
Argobots use a sequential approach that checks either a
memory word value or the work unit status respectively. The
unique difference between the last two implementations is
that Argobots not only checks the status but also frees the
work unit structure. Nevertheless, this additional action does
not cause a performance drop and Argobots still obtains
the best result. Conversely, scenarios using MassiveThreads

deliver the worst performance because, since the main task
can be executed by any of Workers, each time a thread is
joined, a query of the current work unit queue size and several
scheduling procedures occur.

VII. PARALLEL CODE PATTERNS

Many scientific applications can be easily accelerated using
OpenMP. The basic mechanism is to use pragmas in order to
indicate the compiler which portion of code can be executed
in parallel. A few code patterns are common in many scientific
applications. In this section, we present and discuss some
of the common parallel code patterns and then analyze how
current OpenMP runtimes deal with them.

A. For Loop
The most frequently used OpenMP pragma and probably

also the easiest way to express parallelism is: #pragma omp

parallel for (see Listing 1). It can be placed right before
a parallel loop that does not have any iteration dependence,
and produces a code where all available threads execute
their own iteration range. All the process is transparent to
the programmer who is only responsible for selecting the
parallelizable code portion and adding the pragma. From the
point of view of current OpenMP runtimes, gcc and icc

manage this scenario similarly. The master thread sets the
pointer function call of the parallel code in each thread’s data

Listing 1: OpenMP for loop parallelism.
1 #pragma omp parallel for
2 for (int i = 0; i < N; i++) {
3 code(i);
4 }

structure and then the master thread also calls the function.
All threads wait in a barrier (unless a nowait clause is used)
at the end of this code.

B. Task Parallelism

Task parallelism appeared in the OpenMP 3.0 specification
as an alternative to parallelize unbounded loops, recursive
codes, adding more flexibility to parallel codes. It follows
the LWT approach in the sense that tasks are pieces of
queued code waiting to be executed by an existing idle thread.
This is expressed with the pragma #pragma omp task, but
each OpenMP runtime leverages its own approach for task
management. For example, the gcc implementation creates
a shared task queue that can be accessed by all the team’s
threads. On the other hand, the icc allows each thread to
allocate a private task queue where tasks are stored. Moreover,
it implements a work-stealing mechanism that is triggered
once a thread’s task queue is empty and the thread is idle. Both
implementations add a non-configurable cutoff mechanism that
avoids performance loss when a large number of tasks are cre-
ated. Once a certain number of tasks is reached (64⇥number
of threads for gcc and 256 in each thread’s queue in the icc),
new tasks are executed sequentially instead of being pushed
into the queues. The following two situations can be found
depending on the structure where tasks are created:

1) Single Region: In this scenario, a single thread inside a
single or master OpenMP (#pragma omp single or #pragma
omp master) region is responsible for creating all the tasks,
as shown in Listing 2. While this thread is creating tasks, the
other threads execute them. Once the task creation code is
finished, the task creator thread also participates in the task
execution process. Each OpenMP runtime has its own task
mechanism implementation. As the gcc OpenMP has only one
shared queue, all the tasks are pushed into it and all the threads
compete to gain access there to obtain a task. This shared
queue is protected by a mutex and thus contention increases
with the number of threads. In the icc implementation, the
task creator thread pushes the new tasks into its own task
queue while the other threads try to steal them. Here the
performance is affected by the effectiveness of the work-
stealing mechanism.

2) Parallel Region: This pattern is employed when all the
threads in the team create a certain number of tasks. First, the
threads create all the tasks pushing them into the task queue
(if the cutoff value is not reached), and then they execute the
queued tasks. In the gcc implementation, again, all threads
compete to gain access to the shared queue, while in the
icc approach, each thread will push the tasks into its own

Listing 2: OpenMP task parallelism inside a single region.
1 #pragma omp parallel{
2 #pragma omp single{
3 for (int i = 0; i < N; i++) {
4 #pragma omp task{
5 code(i);
6 }
7 }
8 }
9 }

Listing 3: OpenMP nested parallelism.
1 #pragma omp parallel for
2 for (int i = 0; i < N; i++) {
3 #pragma omp parallel for firstprivate(i)
4 for (int j = 0; j < N; j++){
5 code(i,j);
6 }
7 }

queue and work-stealing will be reduced thanks to a better
load balance.

C. Nested Parallel Constructs

When the runtime implementations find a parallel pragma
in the user’s code, they create a team of the specified number
of threads. Hence, if the current parallel code is not nested,
the main thread becomes the master thread of a thread team.
If it is a nested parallel structure, however, a new team of
threads is created for each thread in the main team. Therefore,
the total number of created threads grows quadratically. The
nested parallelism is not common in applications because the
performance drops when the number of threads exceeds that of
CPUs and because the code behavior is difficult to understand.
There are some types of situations that the user may not be
aware of. For example, a programmer may accelerate code
with OpenMP pragmas, and inside this parallel code, threads
may call an external library function that is parallelized using
also OpenMP pragmas. Both OpenMP implementations ac-
commodate nested parallelism. However, the way they manage
the new thread teams is different. The icc OpenMP runtime
creates a new thread team for each thread in the main team
reusing idle threads or creating them. The gcc implementation
does not reuse the idle threads. Each time an OpenMP pragma
is found, a new team is created for each thread in the main
team. Since the idle threads are not deleted, the total number
of threads may increase exponentially. In order to simplify this
situation, we have reduced this pattern to two nested for loops,
each with its own #pragma omp parallel for directive as
shown in Listing 3.

D. Nested Task Parallelism

Sometimes, a parallel code may be separated into several in-
dependent tasks, such as in divide-and-conquer algorithms. In
these cases, task parallelism is commonly exploited. Therefore,
this situation combines the previous two task scenarios. In the
first step, a single thread creates parent tasks; then each parent

task spawns children tasks. As discussed in Section VII-B,
gcc creates all tasks into the shared queue while icc inserts
all the parent tasks into the single thread queue. Once this is
performed, the children tasks are executed.

VIII. MICROBENCHMARK DESIGN

In this section, we detail the microbenchmark implemen-
tations that will run on top of the LWT libraries. These
microbenchmarks mimic the behavior of the parallel patterns
discussed in the previous section. First, we introduce a general
approach for each test. Then, we describe some specific
implementations that depend on the LWT library. Lastly, we
present a summary of the most frequently used functions.

A. General Development
Although each LWT library internally handles the work

unit storage and execution scheduling, all of them allow the
programmer to control the main thread. This thread works
as a master thread, while the other threads, defined by the
user at run time, wait until they obtain work. Therefore, the
work division and work unit creation is similar for all of them.
Moreover, all the libraries implement a joining mechanism to
wait for work units to complete their execution.

1) For Loop: The main thread divides the iteration space
among a number of threads and creates a work unit for each
thread that contains a function pointer to be executed. An
argument structure is initialized in order to store the data (the
number of iterations, variables, and so on) that is necessary to
execute the function.

2) Task Parallelism: When a single region is used, the main
thread creates one work unit for each OpenMP task and, as in
the previous case, the work unit is initialized with the function
pointer and the needed data. Conversely, if it is placed inside
a parallel region, the main thread first divides the work among
the other threads, as in the for loop case, and then each thread
creates its own work units that represent the OpenMP tasks.

3) Nested Parallel Constructs: For the outer for loop, the
behavior of our implementation is the same as in the for loop
microbenchmark, but each work unit that executes a range of
iterations of the outer loop creates as many work units as there
are threads being used to divide the inner loop iterations.

4) Nested Task Parallelism: This case is implemented
analogously to the single region of the task parallelism mi-
crobenchmark. When a task is executed, it creates a certain
number of child tasks.

B. Specific Implementations
Although all the approaches are similar, each LWT library

adds its own characteristics to the microbenchmark implemen-
tations.

1) Converse Threads: As discussed in Section III, this li-
brary was conceived to be controlled by a higher layer. Despite
it supports two types of work units (ULTs and Messages), only
the latter can be pushed from the main thread execution to
the other thread’s queues. Therefore, all the results in next
section have been obtained using Messages. For this type

TABLE II: Summary of the most used functions in microbenchmark implementations using LWT.
Function Argobots Qthreads MassiveThreads Converse Threads Go

Initialization ABT init qthread initialize myth init ConverseInit
ULT creation ABT thread create qthread fork myth create CthCreate go function

Tasklet creation ABT task create CmiSyncSend
Yield ABT thread yield qthread yield myth yield CthYield
Join ABT thread free qthread readFF myth join channel

Finalization ABT finalize qthread finalize myth fini ConverseExit

of implementations, the main thread employs a round-robin
dispatch in order to push the work units directly into other
thread’s ready queue. Moreover, the return mode is used as it
is the only mode that matches the OpenMP PM from the point
of view of the master thread’s behavior. Both features, the use
of Messages and the Converse return mode, restrict the use of
Converse Threads in nested parallel scenarios.

2) MassiveThreads: For this library, both available policies
(i.e., Work-first and Help-first) are analyzed, though just the
best for each scenario is presented in the results. The real
difference between both implementations resides in the way
that the new work unit is treated. In the former, the current
work unit is pushed into the ready queue and the thread
executes the new work unit. In the latter the new work unit
is pushed into the ready queue and the thread continues with
the execution of the current work unit.

3) Qthreads: With its three levels of hierarchy, Qthreads
accommodates multiple combinations in order to achieve high
performance in each of the previous described situations. We
have tested a set of combinations, including one Shepherd
managing all the node (it manages up to 72 Workers), one
Shepherd for each socket (each one manages up to 36 Work-
ers), and one Shepherd for each CPU (each one manages
just one Worker). After a preliminary analysis, we chose two
combinations: one Shepherd bound to a node or one Shepherds
per CPU. The first choice is better with a reduced number of
work units but increases the load imbalance. The second option
is more appropriate for scenarios with a moderately high
number of work units. We discarded the option with a single
Shepherd for each socket because it performed much worse
than the other choices for all scenarios. Moreover, we decided
to test the functions qthread_fork and qthread_fork_to,
which differ in the work queue where the new work unit is
stored. The former puts the work unit into the current Shepherd
queue and the later allows the user to put the work unit
into other Shepherd’s queue. If the last option is chosen, the
main thread distributes the work using a round-robin dispatch.
Hence, four implementations have been evaluated for each test.

4) Argobots: The flexibility offered by Argobots is two-
fold. On the one hand, two different types of work units can
be used: ULTs and Tasklets. On the other hand, the work
unit pools can be private for each thread or shared among
all of them. If the private pool option is selected, the main
thread needs to dispatch the created work units directly to
each thread’s pool in a round-robin fashion. Therefore, four
possible implementations have been tested. Since Tasklet does
not have its own stack and is not yieldable, in those scenarios

Listing 4: Pseudo-code using abstracted LWT functions.
1 #define N 100
2
3 void example () {
4 printf (" Hello world\n");
5 }
6
7 int main(int argc , char * argv []) {
8 initialization_function ();
9

10 for (int i=0; i<N; i++)
11 ULT_creation_function(example);
12
13 yield_function ();
14
15 for (int i=0; i<N; i++)
16 join_function ();
17
18 finalize_function ();
19 }

that require two steps, the first of them is performed using
ULTs.

5) Go: This library only allows one implementation due to
its unique shared work unit queue. All work units need to be
pushed into this queue as the gcc OpenMP task implementa-
tion does. Therefore, only one possibility is analyzed.

C. Function Summary
Table II summarizes the most commonly used functions

in the microbenchmarks that we have developed. We pos-
tulate that the majority of codes can be implemented using
this reduced set of functions. A pseudo-code illustrating this
summary is shown in Listing 4.

IX. EVALUATION

In this section, we analyze the performance of the parallel
code patterns.

In order to avoid modifying the code for each parallel
pattern, we have carefully chosen to implement a BLAS-1
function that matches perfectly the fine-grained approach of
LWT and is highly parallelizable. We use the well-known Sscal
function, which multiplies (and overwrites) the components of
a vector by a scalar. The kernel code is shown in Listing 5.
In the for loop and the nested for loop cases, the elements in
the vector are divided between the current threads. In the cases
where task parallelism is exploited, one task is created for each
vector element. This granularity is useful to understand each
LWT behavior because this kind of parallelism does not hide
the thread management overhead. Concretely, if the execution

Listing 5: Sscal BLAS-1 function kernel code.
1 for (int i = 0; i < N; i++) {
2 v[i] = v[i] * a;
3 }

 0.001

 0.01

 0.1

 1

1 2 4 8 16 24 32 36 40 48 56 64 72

T
o
ta

l E
xe

cu
tio

n
 T

im
e
 (

m
s)

Number of Threads

OMP (GCC)
OMP (ICC)
Argobots Tasklet
Argobots ULT

Qthreads
MassiveThreads
Converse Threads
Go

Fig. 4: Execution time of 1,000 iteration for loop.

time of a piece of code is long, this overhead is hidden and
there is not any difference between using LWT or OS threads.

A. For Loop

In this scenario, a 1,000 iteration for loop is executed with
each iteration calculating one vector position.

Figure 4 illustrates the results. The implementations selected
for this scenario are Argobots with private pools, Qthreads
with one Shepherd per CPU, and MassiveThreads with the
Help-first policy. While Argobots results present the best
performance thanks to their minimum creation and join times
(see Figures 2 and 3), the other implementations suffer from an
appreciable overhead when more threads are added to the test.
Qthreads maintains its performance because of its constant
joining time, but this behavior changes when more Shep-
herds than the number of cores are used. Once this number
is reached, the total time is increased. gcc and Converse

Threads pay the contention added by the barrier, while Go

suffers from the shared queue. The icc implementation also
experiences a noticeable overhead when more threads than
the number of physical cores are used (as in Figure 3).
MassiveThreads, due to its work-stealing mechanism, shows
the worst performance. As the number of created work units
is the same as that in the Figures 2 and 3, the behavior of this
test is similar to adding those results.

B. Task Parallelism

This test creates a set of tasks. Each task is in charge
of one vector element. Two sizes have been evaluated when
a single thread creates all the work units: 100 tasks and
1,000 tasks. The results for the former test are similar to
those in Figure 4, because the LWT libraries use the same
approach and the number of tasks is small. Figure 5 exposes
the results for 1,000 tasks. In this case, the implementation
choices are Argobots using private pools, Qthreads with

 0.01

 0.1

 1

 10

1 2 4 8 16 24 32 36 40 48 56 64 72

T
o
ta

l E
xe

cu
tio

n
 T

im
e
 (

m
s)

Number of Threads

gcc
icc
Argobots Tasklet
Argobots ULT

Qthreads
MassiveThreads
Converse Threads
Go

Fig. 5: Execution time of 1,000 tasks created into a single
region.

one Shepherd for each Worker, and MassiveThreads with
the Work-first policy. The default behavior in the gcc OpenMP
Runtime has been modified by setting the OMP WAIT POL-
ICY environment variable to passive, in order to decrease
the overhead caused by the task queue contention when the
number of threads is increased. Otherwise, the threads try to
gain the queue access more frequently adding more contention.
The icc implementation suffers because of the work-stealing
mechanism as MassiveThreads does. Worker threads try to
gain access to the master thread queue and steal work units,
adding contention. Moreover, Go follows the trend of gcc

because both of them rely on a single shared queue. Due to the
high number of work units, the difference between Argobots

ULTs and Tasklets is observable. This situation reveals that
if the executed code does not need any context switch, it
is beneficial to use Tasklets instead of ULTs. Furthermore,
as Argobots Tasklets are inspired in Converse Threads

Messages, their performance is similar, and their utilization
reduces the execetion time by a factor of two compared with
ULT implementations. On the other hand, Qthreads follows
a linear trend caused by the task dispatch. In addition, the per-
formance change in the OpenMP implementations when more
than eight threads are used is due to the cut-off mechanism
discussed in Section VII-B. Once this number of threads is
reached, the mechanism is not triggered, and the performance
comes from a real task parallel execution. In contrast with the
for loop case, Qthreads outperforms Argobots becoming the
best ULT choice in this scenario because the time spent in
the join-and-free task mechanism implemented by the latter
is longer than that in the Qthreads join implementation.
However, Argobots presents a more regular behavior when
increasing the number of threads because of the reduced
number of interferences in the resource utilization.

The case where tasks are created inside a parallel region
and each thread has to create its work units into its own queue
represents the first of a two-step algorithm. In the first step,
the pointer to the parallel code is assigned (like in the for loop
scenario); and in the second, the tasks are created. Here, two
different approaches have been evaluated with 100 and 1,000

 0.01

 0.1

 1

 10

1 2 4 8 16 24 32 36 40 48 56 64 72

T
o
ta

l E
xe

cu
tio

n
 T

im
e
 (

m
s)

Number of Threads

gcc
icc
Argobots Tasklet
Argobots ULT

Qthreads
MassiveThreads
Converse Threads
Go

Fig. 6: Execution time of 1,000 tasks created into a parallel
region.

tasks but only the latter is shown because the conclusions
are similar. In this case, the implementation choices are the
same as those in the previous test. Figure 6 displays that Go
and Converse Threads are negatively affected by the two-
step implementation due to the shared queue contention in
the former and the synchronization (more than 70% of the
total time) in the latter. Converse Threads needs extra yield
calls due to the use of Messages in the first step. This im-
plementation is possible because we know how many parallel
code levels exist. This approach would not be possible with
an automatic code generator. MassiveThreads is now more
efficient because its implementation is designed to deal with
recursive paradigms. icc offers better performance because
now, with practically a perfect load balance, the work-stealing
has disappeared. gcc outperforms other solutions thanks to its
cut-off mechanism (up to eight threads) and to the wait policy
value set as in the previous test. Again, Qthreads experiences
a significant increment because of the time with the number
of threads and performs much worse than other libraries. Most
of this performance drop is because of the time spent in the
join mechanism, which doubles the Argobots time. Although
both Argobots implementations use ULTs (that can yield)
in the first step, the difference between ULTs and Tasklets is
noticeable. Again, when just computation code is executed the
use of Tasklets is highly recommended.

C. Nested Parallel Structures
Two approaches have been executed and analyzed for this

case. A scenario where the outer and the inner loops have
100 iterations and an alternative with 1,000 iterations each.
The same conclusions can be extracted from them. Argobots
with private pools, Qthreads with one Shepherd for each
Worker, and MassiveThreads with Work-first policy are
used. Figure 7 shows the results for this test (notice that the
y-axis is in seconds). The OpenMP implementations show a
change if we compare the performance difference with LWT
libraries in this figure with that shown in the previous. This
is due to the suboptimal implementation of the nested parallel
structures. On the one hand, gcc does not reuse the idle threads
in nested parallel codes, so each time an OpenMP pragma is

 0.0001

 0.001

 0.01

 0.1

 1

 10

1 2 4 8 16 24 32 36

T
o
ta

l E
xe

cu
tio

n
 T

im
e
 (

s)

Number of Threads

gcc
icc
Argobots Tasklet
Argobots ULT

Qthreads
MassiveThreads
Converse Threads
Go

Fig. 7: Execution time of a nested parallel for structure with
1,000 iterations per loop.

found, a set of new threads is created. This situation causes
that, with 36 threads, this implementation spawns 35,036
threads (36 for the main team, and 35 for each outer loop
iteration). On the other hand, icc reuses the idle threads but
it still creates a large number of threads (1,296: 36 for the
main team and 35 for each secondary team) much more than
the total number of cores (72), causing oversubscription. As in
previous tests, Go and Converse Threads suffer from the two
step algorithm. The former is because all the ULTs are pushed
in the same shared queue, and the latter is because of the
extra yield and barrier functions. However, these implemen-
tations perform close to the OpenMP solutions. Conversely,
Argobots Tasklets, Qthreads, and MassiveThreads show
the best performance because they do not create more threads,
just work units. This approach avoids the oversubscription
problem reducing the OS thread management and increasing
the performance with respect to the Intel OpenMP approach by
factors of 130, 48 and 60 for Argobots Tasklets, Qthreads,
and MassiveThreads respectively when 36 threads are used.
Again, the difference between Qthreads and Argobots ULT
performance is due to the join-and-free mechanism.

D. Nested Task Parallelism
Both task parallelism tests introduced earlier are joined in

the last test. First, a single thread creates the parent tasks,
and then each thread that executes them creates a set of
child tasks. We have tested two approaches, both of them
creating 100 parent tasks, but each creating 4 or 10 child
tasks. The implementations used in this scenario are Argobots
with private pools, Qthreads with one Shepherd for each
Worker, and MassiveThreads with Work-first policy. The
results in Figure 8 correspond to the former, with 100 parent
tasks and 400 child tasks. The two-step algorithm does not
help Converse Threads and Go implementations because
of the same reasons discussed in the Task Parallelism case.
Converse Threads expends up to 75% of its execution
time in performing barrier and yield operations. At the other
extreme, Argobots achieves the best performance with its
two implementations outperforming Qthreads by a factor of
2.8. gcc and icc performances are affected by the single

 0.01

 0.1

 1

 10

1 2 4 8 16 24 32 36 40 48 56 64 72

T
o
ta

l E
xe

cu
tio

n
 T

im
e
 (

m
s)

Number of Threads

gcc
icc
Argobots Tasklet
Argobots ULT

Qthreads
MassiveThreads
Converse Threads
Go

Fig. 8: Execution time of 400 nested tasks.

region step but helped by the cut-off mechanism up to eight
threads (as in Figure 5). MassiveThreads shows a small
overhead due to the combination of work-stealing and the
increasing number of threads, but it performs close to gcc

implementation.

E. Discussion
Although some libraries offer several configuration options,

those we selected show a good match for almost all the
evaluated tests. Argobots with one private queue for each
Execution Stream, and Qthreads with one Shepherd per core
and qthread_fork_to function were always chosen. The
preferred option for MassiveThreads varies depending on the
number of created ULTs but, for most of the tests, the Work-
first policy was the selected option. These three solutions
outperform the other evaluated approaches (including OpenMP
runtimes) in our benchmarks. Concretely, they are clearly
better than the POSIX thread-based solutions in nested and
task parallelism and fine-grained codes.

X. CONCLUSION

We have proved that the use of LWT approaches for fine-
grained parallel codes is feasible, because these libraries can
deal with common parallel code patterns that are accelerated
with OpenMP pragmas, offering a performance level that is,
at least, as good as that reached with the OpenMP runtimes
implemented by GNU and Intel. LWTs improve performance
in scenarios that are becoming more popular such as task
parallelism or nested parallel structures. Moreover, we have
detected some implementation choices with strong impact on
performance in OpenMP runtimes such as the nested paral-
lelism treatment and the effect of the work-stealing mechanism
in the Intel case.

This work has also identified a reduced set of functions
that suffice to implement each parallel code pattern. In the
future, we plan to design and implement a common API for
the LWT libraries. This API could be placed under several
high-level PMs, such as OpenMP or OmpSs, that are currently
implemented on top of Pthreads or custom ULT solutions.

XI. ACKNOWLEDGMENTS

The researchers from the Universitat Jaume I de Castelló
were supported by project TIN2014-53495-R of the MIMECO,
the Generalitat Valenciana fellowship programme Vali+d 2015,
and FEDER. This work was partially supported by the U.S.
Dept. of Energy, Office of Science, Office of Advanced
Scientific Computing Research (SC-21), under contract DE-
AC02-06CH11357. We gratefully acknowledge the computing
resources provided and operated by the Joint Laboratory for
System Evaluation (JLSE) at Argonne National Laboratory.

REFERENCES

[1] “TOP500 Supercomputer Sites,” http://www.top500.org/.
[2] B. Nichols, D. Buttlar, and J. Farrell, Pthreads programming: A POSIX

standard for better multiprocessing. ” O’Reilly Media, Inc.”, 1996.
[3] “OpenMP 4.5 specification,” www.openmp.org/.
[4] D. Stein and D. Shah, “Implementing lightweight threads.” in USENIX

Summer, 1992.
[5] Microsoft MSDN Library, “Fibers,” https://msdn.microsoft.com/en-us/

library/ms682661.aspx.
[6] “Programming with Solaris Threads,” https://docs.oracle.com/cd/

E19455-01/806-5257/6je9h033n/index.html.
[7] J. d. Cuvillo, W. Zhu, Z. Hu, and G. R. Gao, “TiNy threads: A thread

virtual machine for the Cyclops64 cellular architecture,” in Proceedings
of the Fifth Workshop on Massively Parallel Processing, April 2005.

[8] L. V. Kalé, M. A. Bhandarkar, N. Jagathesan, S. Krishnan, and J. Yelon,
“Converse: An interoperable framework for parallel programming,” in
Proceedings of the 10th International Parallel Processing Symposium
(IPPS), April 1996, pp. 212–217.

[9] L. V. Kale and S. Krishnan, CHARM++: A portable concurrent object
oriented system based on C++. ACM, 1993, vol. 28, no. 10.

[10] BSC, “Nanos++,” https://pm.bsc.es/projects/nanox/.
[11] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Mar-

torell, and J. Planas, “OmpSs: A proposal for programming hetero-
geneous multi-core architectures,” Parallel Processing Letters, vol. 21,
no. 02, pp. 173–193, 2011.

[12] J. Nakashima and K. Taura, “MassiveThreads: A thread library for high
productivity languages,” in Concurrent Objects and Beyond. Springer
Berlin Heidelberg, 2014, vol. 8665, pp. 222–238.

[13] K. B. Wheeler, R. C. Murphy, and D. Thain, “Qthreads: An API for
programming with millions of lightweight threads,” in Proceedings of
the 2008 Workshop on Multithreaded Architectures and Applications
(MTAAP), April 2008.

[14] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks,
A. Castelló, D. Genet, T. Herault, P. Jindal, L. V. Kalé, S. Krish-
namoorthy, J. Lifflander, H. Lu, E. Meneses, M. Snir, Y. Sun, and
P. Beckman, “Argobots: A lightweight threading/tasking framework,”
2016, https://collab.cels.anl.gov/display/ARGOBOTS/.

[15] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime system,”
Journal of Parallel and Distributed Computing, vol. 37, no. 1, pp. 55–69,
1996.

[16] C. Pheatt, “Intel R� threading building blocks,” Journal of Computing
Sciences in Colleges, vol. 23, no. 4, pp. 298–298, 2008.

[17] F. Schmager, N. Cameron, and J. Noble, “Gohotdraw: Evaluating the
go programming language with design patterns,” in Evaluation and
Usability of Programming Languages and Tools. ACM, 2010, p. 10.

[18] “Stackless Python,” http://www.stackless.com.
[19] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: Simpli-

fying event-driven programming of memory-constrained embedded sys-
tems,” in Proceedings of the 4th International Conference on Embedded
Networked Sensor Systems, ser. SenSys ’06, October 2006, pp. 29–42.

[20] L. V. Kalé, J. Yelon, and T. Knuff, “Threads for interoperable parallel
programming,” in Proceedings of the 9th International Workshop on
Languages and Compilers for Parallel Computing, ser. LCPC ’96,
August 1996, pp. 534–552.

This%material%is%based%upon%work%supported%by%the%U.S.%Department%of%Energy,%
Office%of%Science,%under%contract%number%DE?AC02?06CH11357.%
The%submitted%manuscript%has%been%created%by%UChicago%Argonne,%LLC,%Operator%of%
Argonne%National%Laboratory%("Argonne").%%Argonne,%a%U.S.%Department%of%Energy%
Office%of%Science%laboratory,%is%operated%under%Contract%No.%DE?AC02?
06CH11357.%%The%U.S.%Government%retains%for%itself,%and%others%acting%on%its%behalf,%a%
paid?up%nonexclusive,%irrevocable%worldwide%license%in%said%article%to%reproduce,%
prepare%derivative%works,%distribute%copies%to%the%public,%and%perform%publicly%and%
display%publicly,%by%or%on%behalf%of%the%Government.%

